已知函数,(1)判断的奇偶性并说明理由;(2)当时,判断在上的单调性并用定义证明;(3)当时,若对任意,不等式恒成立,求实数的取值范围.
已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8. (1)求椭圆的标准方程; (2)已知圆,直线.试证明当点在椭圆上运动时,直线与圆恒相交;并求直线被圆所截得的弦长的取值范围.
椭圆:的两个焦点为、,点在椭圆上,且,,. (Ⅰ)求椭圆的方程; (Ⅱ)若直线过圆的圆心,交椭圆于、两点,且、关于点对称,求直线的方程.
设函数,若对所有的,都有成立,求实数的取值范围.
如图,在四棱锥中,底面为矩形,侧棱底面,,,,为的中点. (Ⅰ)求直线与所成角的余弦值; (Ⅱ)在侧面内找一点,使面,并求出点到和的距离.
已知直线l的参数方程为,曲线C的参数方程为. (Ⅰ)将曲线C的参数方程转化为普通方程; (Ⅱ)若直线l与曲线C相交于A、B两点,试求线段AB的长