(本题13分)已知某种植物种子每粒成功发芽的概率都为,某植物研究所进行该种子的发芽实验,每次实验种一粒种子,每次实验结果相互独立.假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验,设ξ表示四次实验结束时实验成功的次数与失败的次数之差的绝对值;(1)求随机变量ξ的数学期望;(2)记“关于的不等式的解集是实数集R”为事件A,求事件A发生的概率.
如图,已知平面是正三角形,且. (1)设是线段的中点,求证:∥平面; (2)求直线与平面所成角的余弦值.
一个袋中装有大小相同的球10个,其中红球8个,黑球2个,现从袋中有放回地取球,每次随机取1个. 求: (1)连续取两次都是红球的概率; (2)如果取出黑球,则取球终止,否则继续取球,直到取出黑球,但取球次数最多不超过4次,求取到黑球的概率。
数列对任意,满足. (1)求数列通项公式; (2)若,求的通项公式及前项和.
已知,且、、是正数,求证:.
在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方程,曲线C的参数方程为为参数),求曲线C截直线l所得的弦长。