(本题13分)已知某种植物种子每粒成功发芽的概率都为,某植物研究所进行该种子的发芽实验,每次实验种一粒种子,每次实验结果相互独立.假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验,设ξ表示四次实验结束时实验成功的次数与失败的次数之差的绝对值;(1)求随机变量ξ的数学期望;(2)记“关于的不等式的解集是实数集R”为事件A,求事件A发生的概率.
在△ABC中,a、b、c分别是角A、B、C的对边,且=-. (1)求角B的大小; (2)若b=,a+c=4,求△ABC的面积.
数列是递增的等比数列,且 (1)求数列的通项公式; (2)若,求证:数列是等差数列.
已知函数,. (1)用定义证明:不论为何实数在上为增函数; (2)若为奇函数,求的值; (3)在(2)的条件下,求在区间[1,5]上的最小值.
已知函数. (1)判断函数的奇偶性,并加以证明; (2)用定义证明在上是减函数; (3)函数在上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).
某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次, 如果每次拖7节车厢,则每日能来回10次. (1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式: (2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数。