已知函数.(1)判断函数的奇偶性,并加以证明;(2)用定义证明在上是减函数;(3)函数在上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).
(本题14分)已知函数, (Ⅰ) 设函数f(x)的图象与x轴交点为A, 曲线y=f(x)在A点处的切线方程是, 求的值; (Ⅱ) 若函数, 求函数的单调区间.
(本题共12分) 一盒中放有的黑球和白球,其中黑球4个,白球5个. (Ⅰ)从盒中同时摸出两个球,求两球颜色恰好相同的概率; (Ⅱ)从盒中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率. (Ⅲ)若取到白球则停止摸球,求取到第三次时停止摸球的概率
设. (Ⅰ)判断函数在的单调性并证明; (Ⅱ)求在区间上的最小值。
已知函数与函数. (I)若的图象在点处有公共的切线,求实数的值; (II)设,求函数的极值.
已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求的取值范围。