(本小题满分10分)选修1—4:几何证明选讲如图,是直角三角形,.以为直径的圆交于点,点是边的中点.连结交圆于点.(Ⅰ)求证:、、、四点共圆;(Ⅱ)求证:
已知函数是偶函数.(1)求k的值;(2)若函数y=f(x)的图象与直线没有交点,求b的取值范围.(3)设,若函数f(x)与h(x)的图象有且只有一个公共点,求实数a的取值范围.
某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
若函数f(x)=logax(0<a<1)在区间[2,8]上的最大值与最小值之差为2,求a的值.
已知函数f(x)=.(1)求函数f(x)的定义域; (2)判断函数f(x)的奇偶性,并说明理由.
已知集合A={x|3≤x<7},B={x|x2﹣12x+20<0},C={x|x<a}.(1)A∪B;(∁RA)∩B;(2)若A∩C=A,a的取值范围.