(本题满分12分)已知(Ⅰ)求函数的最小正周期;(Ⅱ)当时,方程有实数解,求实数的取值范围.
如图,已知A、B是单位圆O上的点,C是圆与x轴正半轴的交点,点A的坐标为,点B在第二象限,且△AOB为正三角形.(Ⅰ)求sin∠COA; (Ⅱ)求△BOC的面积.
已知点A(2,0),B(0,2),点C(x,y)在单位圆上.(1)若|+|=(O为坐标原点),求与的夹角;(2)若⊥,求点C的坐标.
已知,用单位圆求证下面的不等式:(1)sinx<x<tanx;(2).
如图,A、B是单位圆O上的点,C是圆O与x轴正半轴的交点,点A的坐标为,三角形AOB为直角三角形.(1)求sin∠COA,cos∠COA的值;(2)求cos∠COB的值.
已知函数,其中函数在上是减函数.(1)求曲线在点处的切线方程;(2)若在上恒成立,求得取值范围.(3)关于的方程,有两个实根,求的取值范围.