(本小题满分13分)如图,四棱锥P—ABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=AD=1. (1)求证:面PAC⊥面PCD;(2)在棱PD上是否存在一点E,使CE∥面PAB?若存在,请确定E点的位置;若不存在,请说明理由.
(本小题满分14分)已知为实数,对于实数和,定义运算“”:, 设. (Ⅰ)若在上为增函数,求实数的取值范围; (Ⅱ)若方程有三个不同的解,记此三个解的积为,求的取值范围.
(本小题满分15分)如图,设抛物线的焦点为,为抛物线的顶点.过作抛物线 的弦,直线,分别交直线于点,. (Ⅰ)当时,求的值; (Ⅱ)设直线的方程为,记的面积为,求关于的解析式.
(本小题满分15分)如图,已知平面,,,, 为等边三角形. (Ⅰ)求证:平面平面; (Ⅱ)求与平面所成角的正弦值.
(本小题满分15分)已知数列满足,.令. (Ⅰ)求证:数列为等差数列; (Ⅱ)求证:.
(本小题满分15分)已知在中,,,分别是角,,的对边,且满足. (Ⅰ)求角的大小; (Ⅱ)若点为边的中点,求面积的最大值.