(本小题满分13分)如图,四棱锥P—ABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=AD=1. (1)求证:面PAC⊥面PCD;(2)在棱PD上是否存在一点E,使CE∥面PAB?若存在,请确定E点的位置;若不存在,请说明理由.
焦点在x轴上的双曲线过点且点与两焦点的连线互相垂直。 (1)求此双曲线的标准方程; (2)过双曲线的右焦点倾斜角为的直线与双曲线交于A、B两点,求的长。
某高速公路某施工工地需调运建材100吨,可租用装载的卡车和农用车分别为10辆和20辆,若每辆卡车装载8吨,运费960元,每辆农用车装载2.5吨,运费360元,问两种车各租用多少辆时,才能一次性装完且总费用最低?
如图为函数y=Asin(ωx+φ)(A>0,ω>0)的图象的一部分,试求该函数的一个解析式.
已知数列满足, (1)求;(2)判断20是不是这个数列的项,并说明理由; (3)求这个数列前n项的和。
若经过两点A(, 0),B(0, 2)的直线与圆相切,求的值