(本小题满分13分)某同学用“五点法”画函数在某一个周期内的图象时,列表并填入的部分数据如下表:(Ⅰ)请求出上表中的,并直接写出函数的解析式;(Ⅱ)将的图象沿轴向右平移个单位得到函数,若函数在(其中)上的值域为,且此时其图象的最高点和最低点分别为,求与夹角的大小。
已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列. (1)求数列{an}的通项公式; (2)设Tn=Sn-(n∈N*),求数列{Tn}的最大项的值与最小项的值.
已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}是各项均不为0的等差数列,其前n项和为Sn,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足b1=2,bn≠1,且(bn-bn+1)·g(bn)=f(bn)(n∈N+). (1)求an并证明数列{bn-1}是等比数列; (2)若数列{cn}满足cn=,证明:c1+c2+c3+…+cn<3.
正项数列{an}的前n项和Sn满足:-(n2+n-1)Sn-(n2+n)=0. (1)求数列{an}的通项公式an; (2)令bn=,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<.
已知数列{an}是首项为,公比为的等比数列,设bn+15log3an=t,常数t∈N*. (1)求证:{bn}为等差数列; (2)设数列{cn}满足cn=anbn,是否存在正整数k,使ck,ck+1,ck+2按某种次序排列后成等比数列?若存在,求k,t的值;若不存在,请说明理由.
在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列. (1)求d,an; (2)若d<0,求|a1|+|a2|+…+|an|.