设函数.(Ⅰ)当曲线处的切线斜率;(Ⅱ)求函数的单调区间与极值(Ⅲ)已知方程有三个互不相同的实根0,,且.若对任意的,恒成立,求m的取值范围
如图,向量被矩阵M对应的变换作用后分别变成,(1)求矩阵M;(2)求在作用后的函数解析式.
已知函数f(x)=ln(x+1)+ax2-x,a∈R.(1)当时,求函数y=f(x)的极值;(2)是否存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b)?若存在,求实数a的取值范围,若不存在,请说明理由.
已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.(1)求曲线C的方程;(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.(ⅰ)证明:k·kON为定值;(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.
如图所示,抛物线与轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD作为工业用地,其中A、B在抛物线上,C、D在轴上.已知工业用地每单位面积价值为元,其它的三个边角地块每单位面积价值元.(1)求等待开垦土地的面积;(2)如何确定点C的位置,才能使得整块土地总价值最大.
小王经营一家面包店,每天从生产商处订购一种品牌现烤面包出售.已知每卖出一个现烤面包可获利10元,若当天卖不完,则未卖出的现烤面包因过期每个亏损5元.经统计,得到在某月(30天)中,小王每天售出的现烤面包个数及天数如下表:
试依据以频率估计概率的统计思想,解答下列问题:(1)计算小王某天售出该现烤面包超过13个的概率;(2)若在今后的连续5天中,售出该现烤面包超过13个的天数大于3天,则小王决定增加订购量.试求小王增加订购量的概率.(3)若小王每天订购14个该现烤面包,求其一天出售该现烤面包所获利润的分布列和数学期望.