在数列 中,已知,且对任意,总有成等差数列,其公差为.(Ⅰ)证明:,,成等比数列;(Ⅱ)求数列的通项公式;(Ⅲ)记,证明:.
已知函数. (Ⅰ)求函数的最小正周期及图象的对称轴方程; (Ⅱ)设函数,求的值域.
(本小题满分16分) 已知为实数,函数,函数, 令函数. ⑴若,求函数的极小值; ⑵当时,解不等式; ⑶当时,求函数的单调区间.
(本小题满分16分) 已知数列满足,当,时,. ⑴求数列的通项公式; ⑵是否存在,使得时,不等式对任意实数恒成立?若存在,求出的最小值;若不存在,请说明理由. ⑶在轴上是否存在定点,使得三点、、(其中、、是互不相等的正整数且)到定点的距离相等?若存在,求出点及正整数、、;若不存在,说明理由.
(本小题满分16分) 在平面直角坐标系中,椭圆:的右焦点为 (,为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆于、两点. ⑴求椭圆的标准方程; ⑵若时,,求实数; ⑶试问的值是否与的大小无关,并证明你的结论.
(本小题满分14分) 某公司2009年9月投资14400万元购得上海世界博览会某种纪念品的专利权及生产设备,生产周期为一年.已知生产每件纪念品还需要材料等其它费用20元,为保证有一定的利润,公司决定纪念品的销售单价不低于150元,进一步的市场调研还发现:该纪念品的销售单价定在150元到250元之间较为合理(含150元及250元).并且当销售单价定为150元时,预测年销售量为150万件;当销售单价超过150元但不超过200元时,预测每件纪念品的销售价格每增加1元,年销售量将减少1万件;当销售单价超过200元但不超过250元时,预测每件纪念品的销售价格每增加1元,年销售量将减少1.2万件. 根据市场调研结果,设该纪念品的销售单价为(元),年销售量为(万件),平均每件纪念品的利润为(元). ⑴求年销售量为关于销售单价的函数关系式; ⑵该公司考虑到消费者的利益,决定销售单价不超过200元,问销售单价为多少时,平均每件纪念品的利润最大?