在数列 中,已知,且对任意,总有成等差数列,其公差为.(Ⅰ)证明:,,成等比数列;(Ⅱ)求数列的通项公式;(Ⅲ)记,证明:.
已知函数(1)若函数是上的增函数,求的取值范围;(2)证明:当时,不等式对任意恒成立;(3)证明:
如图,已知平面,∥,是正三角形,且.(1)设是线段的中点,求证:∥平面; (2)求直线与平面所成角的余弦值.
已知数列满足,数列满足.(1)求证:数列是等差数列;(2)设,求满足不等式的所有正整数的值.
已知与共线,其中A是△ABC的内角.(1)求角A的大小; (2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.
(本小题满分14分)已知函数 ,.(Ⅰ)当 时,求函数 的最小值;(Ⅱ)当 时,讨论函数 的单调性;(Ⅲ)求证:当 时,对任意的 ,且,有.