已知函数f(x)满足2f(x+2)=f(x),当x∈(0,2)时,f(x)=lnx+ax (),当x∈(―4,―2)时,f(x)的最大值为―4.(1)求x∈(0,2)时,f(x)的解析式;(2)是否存在实数b使得不等式对于恒成立?若存在,求出实数b的取值集合;若不存在,请说明理由.
某校高三年级组为了缓解学生的学习压力,举办元宵猜灯谜活动。规定每人最多猜3道,在A区猜对一道灯谜获3元奖品;在B区猜对一道灯谜获2元奖品,如果前两次猜题后所获奖品总额超过3元即停止猜题,否则猜第三道题。假设某同学猜对A区的任意一道灯谜的概率为0.25,猜对B区的任意一道灯谜的概率为0.8,用表示该同学猜灯谜结束后所得奖品的总金额。 (1)若该同学选择先在A区猜一题,以后都在B区猜题,求随机变量的数学期望; (2)试比较该同学选择都在B区猜题所获奖品总额超过3元与选择(1)中方式所获奖品总额超过3元的概率的大小。
如图,在四边形中,,,点为线段上的一点.现将沿线段翻折到(点与点重合),使得平面平面,连接,. (Ⅰ)证明:平面; (Ⅱ)若,且点为线段的中点,求二面角的大小.
已知数列{}的前项和为 (1)求证:数列是等比数列; (2)设数列{}的前项和为,求。
已知向量. (1)求的增区间; (2)已知△ ABC内接于半径为6的圆,内角A、B、C的对边分别 为,若,求边长
已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.(1)证明:⊥平面(2)求平面与平面所成角的余弦值;