(15分)数列{an},a1=1,(1)求a2,a3的值;(2)是否存在常数,使得数列是等比数列,若存在,求出的值;若不存在,说明理由;(3)设,
已知数列是等差数列,是等比数列,。(1)求数列、的通项公式;(2)设数列中,,求数列的前n项和Sn.
如图,菱形ABCD的边长为2,∠BAD=60º, M为AB边上不与端点重合的动点,且CM与DA分别延长后交于点N,若以菱形的对角线所在直线为坐标轴建立平面直角坐标系,并设BM=2t (0<t<1). (1)试用t表示与,并求它们所成角的大小; (2)设f(t)=·,g(t)=at+4-2a(a>0),分别根据以下条件,求出实数的取值范围: ①存在t1,t2∈(0,1),使得=g(t2); ②对任意t1∈(0,1),恒存在t2∈(0,1),使得=g(t2).
已知函数f(x)=x2·ln|x|(x≠0).(1)求f(x)的最值; (2)若关于x的方程f(x)=kx-1无实数解,求实数k的取值范围.
若,,为同一平面内互不共线的三个单位向量,并满足++=,且向量=x++(x+) (x∈R,x≠0,n∈N+).(1)求与所成角的大小;(2)记f(x)=||,试求f(x)的单调区间及最小值.
已知△ABC的三内角A, B, C所对边的长依次为a,b,c,若cosA=,cosC=.(1)求cos B的值;(2)若|+|=,求BC边上中线的长.