6本不同的书,按照以下要求处理,各有几种分法?(1)一堆一本,一堆两本,一堆三本;(2)甲得一本,乙得二本,丙得三本;(3)平均分给甲、乙、丙三人;(4)平均分成三堆.
(本小题满分13分)设函数y=f(x)的定义域为(0,+∞),且在(0,+∞)上单调递增,若对任意x,y∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,数列{an}满足:a1=f(1)+1,f(-)+f(+)=0.设Sn=aa+aa+aa+…+aa+aa.(1)求数列{an}的通项公式,并求Sn关于n的表达式;(2)设函数g(x)对任意x、y都有:g(x+y)=g(x)+g(y)+2xy,若g(1)=1,正项数列{bn}满足:b=g(),Tn为数列{bn}的前n项和,试比较4Sn与Tn的大小.
(本小题满分13分)某化工厂生产某种产品,每件产品的生产成本是3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件;若该企业所生产的产品全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数a(1≤a≤3).(1)求该企业正常生产一年的利润L(x)与出厂价x的函数关系式;(2)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润.
(本小题满分12分)已知数列{an}的前三项与数列{bn}的前三项对应相等,且a1+2a2+22a3+…+2n-1an=8n对任意的n∈N*都成立,数列{bn+1-bn}是等差数列.(1)求数列{an}与{bn}的通项公式;(2)是否存在k∈N*,使得bk-ak∈(0,1)?请说明理由.
(本小题满分12分)已知函数f(x)=2sinωx·cos(ωx+)+(ω>0)的最小正周期为4π.(1)求正实数ω的值;(2)在△ABC中,内角A、B、C的对边分别为a、b、c,且满足2bcosA=acosC+ccosA,求f(A)的值.
(本小题满分12分)若盒中装有同一型号的灯泡共12只,其中有9只合格品,3只次品.(1)某工人师傅有放回地连续从该盒中取灯泡3次,每次取一只灯泡,求2次取到次品的概率;(2)某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡前取出的次品灯泡只数X的分布列和数学期望.