已知数列满足:,且(). (Ⅰ)求证:数列为等差数列;(Ⅱ)求数列的通项公式;(Ⅲ)求下表中前行所有数的和.
已知, 求(1);(2)的值
已知 (1)求的值; (2)若是第三象限的角,化简三角式,并求值.
已知椭圆经过点,其离心率为,经过点,斜率为的直线与椭圆相交于两点. (Ⅰ)求椭圆的方程; (Ⅱ)求的取值范围; (Ⅲ)设椭圆与轴正半轴、轴正半轴分别相交于两点,则是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
数列首项,前项和与之间满足. (Ⅰ)求证:数列是等差数列; (Ⅱ)求数列的通项公式; (Ⅲ)设存在正数,使对都成立,求的最大值.
如图,是等腰直角三角形,,,分别为的中点,沿将折起,得到如图所示的四棱锥. (Ⅰ)在棱上找一点,使∥平面; (Ⅱ)当四棱锥的体积取最大值时,求平面与平面夹角的余弦值.