如图,游客在景点处下山至处有两条路径.一条是从沿直道步行到,另一条是先从沿索道乘缆车到,然后从沿直道步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,索道长为,经测量,.(1)求山路的长;(2)假设乙先到,为使乙在处等待甲的时间不超过分钟,乙步行的速度应控制在什么范围内?
在中,三个内角,,的对边分别为,,,其中,且 (1)求证:是直角三角形; (2)设圆过三点,点位于劣弧上,,用的三角函数表示三角形的面积,并求面积最大值.
设命题函数的定义域为;命题对一切的实数恒成立,如果命题“”为假命题,求实数的取值范围.
设函数(m>0) (1)证明:f(x)≥4; (2)若f(2)>5,求m的取值范围.
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:(a>0),过点P(-2,-4)的直线l的参数方程为(t为参数),l与C分别交于M,N. (1)写出C的平面直角坐标系方程和l的普通方程; (2)若|PM|,|MN|,|PN|成等比数列,求a的值.
如图,⊙O过平行四边形ABCT的三个顶点B,C,T,且与AT相切,交AB的延长线于点D. (1)求证:AT2=BT·AD; (2)E、F是BC的三等分点,且DE=DF,求∠A.