(本小题满分12分)已知函数,其中e为自然对数的底数,a为常数.(1)若对函数存在极小值,且极小值为0,求a的值;(2)若对任意,不等式恒成立,求a的取值范围.
某电视台“挑战主持人”节目的挑战者闯第一关需要回答3个问题,其中前两个问题回答正确各得10分,回答不正确各得0分,第三题回答正确得20分,回答不正确得-10分,总得分不少于30分即可过关.如果一位挑战者回答前两题正确的概率都是,回答第三题正确的概率为,且各题回答正确与否相互之间没有影响.记这位挑战者回答这三个问题的总得分为。(1)求这位挑战者过关的概率有多大; (2)求的概率分布和数学期望。
(本小题满分12分)设圆过点P(0,2), 且在轴上截得的弦RG的长为4.(Ⅰ)求圆心的轨迹E的方程;(Ⅱ)过点(0,1),作轨迹的两条互相垂直的弦,, 设、 的中点分别为,,试判断直线是否过定点?并说明理由.
(本小题满分13分)一个袋中有大小相同的标有1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回),记下标号.若拿出球的标号是3的倍数,则得1分,否则得分. (Ⅰ)求拿4次至少得2分的概率; (Ⅱ)求拿4次所得分数的分布列和数学期望.
(本小题满分12分)已知抛物线的准线方程,与直线在第一象限相交于点,过作的切线,过作的垂线交x轴正半轴于点,过作的平行线交抛物线于第一象限内的点,过作抛物线的切线,过作的垂线交x轴正半轴于点,…,依此类推,在x轴上形成一点列,,,…,,设点的坐标为(Ⅰ)试探求关于的递推关系式; (Ⅱ)求证:;(Ⅲ)求证:.
(本小题满分12分)某工厂生产某种儿童玩具,每件玩具的成本为30元,并且每件玩具的加工费为元(其中为常数,且),设该工厂每件玩具的出厂价为元(),根据市场调查,日销售量与(为自然对数的底数)成反比例,当每件玩具的出厂价为40元时,日销售量为10件.(Ⅰ)求该工厂的日利润(元)与每件玩具的出厂价元的函数关系式;(Ⅱ)当每件玩具的日售价为多少元时,该工厂的利润最大,并求的最大值.