设等比数列的首项为(>0),公比为(),前项和为80,其中最大的一项为54,又它的前项和为6560,求和.
在数列中,(其中为数列的前n项和). (I )求数列的通项公式; (II)若,求数列的前n项和,
如图,三棱锥S-ABC 中,SC丄底面ABC,,SC=AC=BC=,M为SB中点,N在AB上,满足MN 丄 BC. (I)求点N到平面SBC的距离; (II)求二面角C-MN-B的大小.
某装置由两套系统M,N组成,只要有一套系统工作正常,该装置就可以正常工作。每套系统都由三种电子模块T1,T2,T3组成(如图所示已知T1,T2,T3正常工作的概率都是,且T1,T2,T3能否正常工作相互独立.(注:对每一套系统或每一种电子模块而言,只要有电流通过就能正常工作.) (I )分别求系统M,N正常工作的概率; (II)设该装I中两套系统正常工作的套数为,求的分布列和期望.
已知中,,,设. (1 )用表示; (11)求的单调递增区间.
已知奇函数,的图象在x=2处的切线方程为 (I )求的解析式; (II)是否存在实数,m,n使得函数在区间上的最小值为m,最大值为n.若存在,求出这样一组实数m,n,若不存在,则说明理由.