设等差数列的前项和为,且,。(1)求数列的通项公式;(2)设数列的前项和为,且(其中是非零的实数),若,,成等差数列,问,, 能成等比数列吗?说明理由;(3)设数列的通项公式,是否存在正整数、(),使得,,成等比数列?若存在,求出所有、的值;若不存在,说明理由。
如图,在正方体中,为底面的中心,是的中点,设是上的中点,求证:(1); (2)平面∥平面.
根据下列条件求直线方程 (1)过点(2,1)且倾斜角为的直线方程; (2)过点(-3,2)且在两坐标轴截距相等的直线方程.
已知定点A(0,1),B(0,-1),C(1,0).动点P满足:. (1)求动点P的轨迹方程,并说明方程表示的曲线类型; (2)当时,求的最大、最小值.
设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求: (Ⅰ)求实数b 的取值范围; (Ⅱ)求圆C 的方程;
如图,在正三棱柱ABC—A1B1C1中,底面边长及侧棱长均为2,D是棱AB的中点, (1)求证; (2)求异面直线AC1与B1C所成角的余弦值.