设等差数列的前项和为,且,。(1)求数列的通项公式;(2)设数列的前项和为,且(其中是非零的实数),若,,成等差数列,问,, 能成等比数列吗?说明理由;(3)设数列的通项公式,是否存在正整数、(),使得,,成等比数列?若存在,求出所有、的值;若不存在,说明理由。
某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为80,90、90,100、100,110、110,120、120,130,由此得到两个班测试成绩的频率分布直方图: (I)完成下面2×2列联表,你能有97.5的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;
(II)现从乙班50人中任意抽取3人,记表示抽到测试成绩在[100,120的人数,求的分布列和数学期望. 附:,其中
已知函数. (1)求函数的单调递增区间; (2)记△的内角、、所对的边长分别为、、,若,△的面积,,求的值.
已知点(1,2)是函数的图象上一点,数列的前项和是. (1)求数列的通项公式; (2)若,求数列的前项和
)已知函数满足对一切都有,且,当时有. (1)求的值; (2)判断并证明函数在上的单调性; (3)解不等式:
已知圆O:和定点,由圆O外一点向圆O引切线,切点为,且满足. (1)求实数间满足的等量关系; (2)求线段长的最小值; (3)若以为圆心所作的圆P与圆0有公共点,试求半径取最小值时圆P的方程.