如图,在正三棱柱ABC—A1B1C1中,底面边长及侧棱长均为2,D是棱AB的中点,(1)求证;(2)求异面直线AC1与B1C所成角的余弦值.
(本小题满分12分) 已知直线经过直线与直线的交点,且垂直于直线. (1)求直线的方程;(2)求直线与两坐标轴围成的三角形的面积.
(本小题满分16分)已知椭圆:的离心率为,直线:与椭圆相切.(1)求椭圆的方程;(2)设椭圆的左焦点为,右焦点为,直线过点且垂直与椭圆的长轴,动直线垂直于直线于点,线段的垂直平分线交于点,求点的轨迹的方程.
(本小题满分16分)如图,平面直角坐标系中,和为等腰直角三角形,,设和的外接圆圆心分别为.(Ⅰ)若圆M与直线相切,求直线的方程;(Ⅱ)若直线截圆N所得弦长为4,求圆N的标准方程;(Ⅲ)是否存在这样的圆N,使得圆N上有且只有三个点到直线的距离为,若存在,求此时圆N的标准方程;若不存在,说明理由.
(本小题满分15分) 设.(1)求函数的单调递增、递减区间;(2)求函数在区间上的最大值和最小值.
(本小题满分14分)如图,在四棱锥中,面,四边形是正方形,是的中点,是的中点(1)求证:面; (2)求证:面.