已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.
(年四川南充8分)如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的延长线上,EP=EG, (1)求证:直线EP为⊙O的切线; (2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG; (3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.
(年山东莱芜10分)如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=(r是⊙O的半径). (1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切; (2)求EF•EC的值; (3)如图2,当F是AB的四等分点时,求EC的值.
(2014年山东济南9分)如图1,有一组平行线∥∥∥,正方形ABCD的四个顶点分别在上,EG过点D且垂直于于点E,分别交于点F,G,. (1)AE= ,正方形ABCD的边长= ; (2)如图2,将∠AEG绕点A顺时针旋转得到,旋转角为,点在直线上,以为边在的左侧作菱形,使点分别在直线上. ①写出与的函数关系并给出证明; ②若,求菱形的边长.
(年辽宁营口14分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H. (1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明; (2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG; (3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.
(年辽宁盘锦14分)已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF. (1)如图1,当点P与点G分别在线段BC与线段AD上时. ①求证:DG=2PC; ②求证:四边形PEFD是菱形; (2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.