为一个等腰三角形形状的空地,腰的长为3(百米),底的长为4(百米).现决定在空地内筑一条笔直的小路(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等,面积分别为和.(1)若小路一端为的中点,求此时小路的长度;(2)若小路的端点两点分别在两腰上,求得最小值.
选修4-4:坐标系与参数方程[(本小题满分10分)己知直线 的参数方程为(t为参数),圆C的参数方程为.(a>0. 为参数),点P是圆C上的任意一点,若点P到直线的距离的最大值为,求a的值。
.选修4-2:矩阵与变换(本小题满分10分)已知 ,矩阵所对应的变换 将直线 变换为自身,求a,b的值。
选修4-1:几何证明选讲如图,0是△ABC的外接圆,AB = AC,延长BC到点D,使得CD = AC,连结AD交O于点E.求证:BE平分ABC
(本小题满分16分)己知函数(1)若,求函数 的单调递减区间;(2)若关于x的不等式 恒成立,求整数 a的最小值:(3)若 ,正实数 满足 ,证明:
(本小题满分16分)在数列 中,已知 ,为常数.(1)证明: 成等差数列;(2)设 ,求数列 的前n项和 ;(3)当时,数列 中是否存在三项 成等比数列,且也成等比数列?若存在,求出的值;若不存在,说明理由.