(本小题12分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅰ)求角的大小; (Ⅱ)若角,边上的中线的长为,求的面积.
若x、y、z均为实数,且a=x2-2y+,b=y2-2z+,c=z2-2x+,则a、b、c中是否至少有一个大于零?请说明理由.
用反证法证明:设三个正实数a、b、c满足条件=2求证:a、b、c中至少有两上不小于1.
若a、b、c∈R,写出命题“若ac<0,则ax2+bx+c=0有两个不相等的实数根”的逆命题、否命题、逆否命题,并判断这三个命题的真假
写出下述命题逆命题、否命题、逆否命题.(1)若,则全为0 .(2)若是偶数,则都是偶数.(3)若,则
你能判断下列命题的真假吗?(1)已知若(2)若无实数根。