(本小题满分12分)如图所示,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.
已知为奇函数, 为偶函数,且.(1)写出解析式,= (2)若,则的取值范围是
已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.(Ⅰ)求圆的方程;(Ⅱ)设直线与圆相交于两点,求实数的取值范围;(Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.(1)证明:AD⊥平面PBC;(2)求三棱锥D-ABC的体积;(3)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
某算法的程序语言如下图所示,(Ⅰ)则输入量与输出量满足的关系式 (Ⅱ)根据程序语言,在下列框格内写出对应的程序框图.
如图,在三棱锥中,分别为的中点.(1)求证:平面;(2)若平面平面,且,,求证:平面平面.