(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C1的参数方程为:(为参数),M是C1上的动点,P点满足,P点的轨迹为曲线C2.(1)求C2的方程;(2)在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求.
(本小题满分14分)设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}是等差数列,数列{bn―2}是等比数列(n∈N*). (Ⅰ)求数列{an},{bn}的通项公式; (Ⅱ)是否存在k∈N*,使?若存在,求出k,若不存在,说明理由.
(本小题满分14分)已知椭圆的右焦点为F,上顶点为A,P为C上任一点,MN是圆的一条直径,若与AF平行且在y轴上的截距为的直线恰好与圆相切.(Ⅰ)求椭圆的离心率;(Ⅱ)若的最大值为49,求椭圆C的方程.
(本小题满分14分) 已知(Ⅰ)求;(Ⅱ)若;(Ⅲ)若<,求证:当和时,都是单调增函数.
(本小题满分13分)如图,在三棱锥中,侧面与侧面均为边长为1的等边三角形,,为中点.(Ⅰ)证明:平面;(Ⅱ)证明:;(Ⅲ)求三棱锥的体积.
(本小题满分13分)甲、乙二人用4张扑克牌(分别是红心2、红心3、红心4、方块4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(Ⅰ)写出甲、乙二人抽到的牌的所有基本事件; (Ⅱ)当甲抽到红心3时,求乙抽出的牌的牌面数字比3大的概率;(Ⅲ)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜;反之,则乙胜,你认为此游戏是否公平说明你的理由.