(本小题满分14分)如图,在△中,为钝角,.为延长线上一点,且.(Ⅰ)求的大小;(Ⅱ)求的长.
设函数.(1)求的最大值,并写出使取最大值时的集合;(2)已知中,角的对边分别为,若,,求的最小值.
已知函数的最大值为3,函数的图象上相邻两对称轴间的距离为,且.(1)求函数的解析式;(2)将的图象向左平移个单位,再向下平移1个单位后得到函数的图象,试判断的奇偶性,并求出在R上的单调递增区间.
已知数列的前项和为.(1)求数列的通项公式;(2)求数列的前项和的取值范围.
已知等比数列中,数列满足.(1)求数列和的通项公式;(2)设,求数列的前项和.
平面直角坐标系中,直线的参数方程(为参数),圆的方程为,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.(1)求直线和圆的极坐标方程;(2)求直线和圆的交点的极坐标(要求极角).