平面直角坐标系中,直线的参数方程(为参数),圆的方程为,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.(1)求直线和圆的极坐标方程;(2)求直线和圆的交点的极坐标(要求极角).
设证明。
设满足数列是公差为,首项的等差数列; 数列是公比为首项的等比数列,求证:。
设二次函数在[3,4]上至少有一个零点,求的最小值。
已知抛物线,过轴上一点的直线与抛物线交于点两点。 证明,存在唯一一点,使得为常数,并确定点的坐标。
已知:,求证:.