函数是定义在上的奇函数,且.(1)求实数的值;(2)判断在上的单调性,并用定义证明判断出的结论;(3)判断有无最值?若有,求出最值。
已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点. (Ⅰ)求椭圆的标准方程; (Ⅱ)已知过点的直线与椭圆交于,两点. (ⅰ)若直线垂直于轴,求的大小; (ⅱ)若直线与轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.
函数的定义域为R,数列满足(且). (Ⅰ)若数列是等差数列,,且(k为非零常数, 且),求k的值; (Ⅱ)若,,,数列的前n项和为,对于给定的正整数,如果的值与n无关,求k的值.
如图(1)在等腰中,D,E,F分别是AB,AC和BC边的中点,,现将沿CD翻折成直二面角A-DC-B.(如图(2)) (I)试判断直线AB与平面DEF的位置关系,并说明理由; (II)求二面角E-DF-C的余弦值; (III)在线段BC是否存在一点P,但APDE?证明你的结论.
在△ABC中,角A、B、C的所对边的长分别为a、b、c,且a=,b=3,sinC=2sinA. (Ⅰ)求c的值; (Ⅱ)求 的值.
抛物线y2=2px(p>0)上纵坐标为-p的点M到焦点的距离为2. (Ⅰ)求p的值; (Ⅱ)如图,A,B,C为抛物线上三点,且线段MA,MB,MC 与x轴交点的横坐标依次组成公差为1的等差数列,若△AMB的面积是△BMC面积的,求直线MB的方程.