(本题6分)在如图所示的平面直角坐标系中,有△ABC.(1)将△ABC向x轴负半轴方向平移4个单位得到△A1B1C1,画出图形并写出点A1的坐标.(2)以原点O为旋转中心,将△ABC顺时针旋转90°后得到△A2B2C2,画出图形并写出点A2的坐标.(3)△A2B2C2可以看作是由△A1B1C1先向右平移4个单位,然后以原点O为旋转中心,顺时针旋转90°得到的.除此之外,△A2B2C2还可以由△A1B1C1经过旋转变换得到,请在图中找出旋转中心.
如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°,得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线. (1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为. (2)求P的对称轴(用含m,n的代数式表示); (3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标; (4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.
(1)如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为;② 线段AD,BE之间的数量关系为; (2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由; (3)如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.
已知二次函数y=(t-4)x2-(2t-5)x+4在x=0与x=5的函数值相等. (1)求二次函数的解析式; (2)若二次函数的图象与x轴交于A,B两点(A在B左侧),与y轴交于点C,一次函数y=kx+b经过B,C两点,求一次函数的表达式; (3)在(2)的条件下,过动点D(0,m) 作直线//x轴,其中.将二次函数图象在直线下方的部分沿直线向上翻折,其余部分保持不变,得到一个新图象M.若直线与新图象M恰有两个公共点,请求出的取值范围.
已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点.求作:点E,使直线DE∥AB,且点E到B、D两点的距离相等.(在题目的原图中用尺规完成作图, 并且保留作图痕迹) 结论:
如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E, CD平分ÐECB, 交过点B的射线于D, 交AB于F, 且BC=BD. (1)求证:BD是⊙O的切线; (2)若AE=9, CE=12, 求BF的长.