(本小题满分12分)在如图所示的几何体中,面为正方形,面为等腰梯形,//,,,.(1)求证:平面;(2)求四面体的体积; (2)线段上是否存在点,使//平面?证明你的结论.
(本小题满分14分)设表示数列的前项和.(1)若为公比为的等比数列,写出并推导的计算公式; (2)若,,求证:<1.
某中学将名高一新生分成水平相同的甲、乙两个“平行班”,每班人,吴老师采用、两种不同的教学方式分别在甲、乙两个班进行教学实验.为了解教学效果,期末考试后,分别从两个班级中各随机抽取名学生的成绩进行统计,作出的茎叶图如下: 记成绩不低于分者为“成绩优秀”. (1)在乙班样本的个个体中,从不低于分的成绩中随机抽取个,记随机变量为抽到“成绩优秀”的个数,求的分布列及数学期望; (2)由以上统计数据填写下面列联表,并判断有多大把握认为“成绩优秀”与教学方式有关?
【改编】设函数.(1)求的定义域和最小正周期;(2)当,若成立,求的取值范围;
(本小题满分12分)已知函数,.(Ⅰ)时,证明:;(Ⅱ),若,求a的取值范围.
已知抛物线的焦点为F,点P是抛物线上的一点,且其纵坐标为4,.(1)求抛物线的方程;(2)设点,()是抛物线上的两点,∠APB的角平分线与x轴垂直,求△PAB的面积最大时直线AB的方程.