抛物线(1)求这条抛物线的对称轴,顶点坐标;(2)求这条抛物线与x轴的交点;(3)在平面直角坐标系中画出该抛物线的简图;(4)当x取什么值时,(5)当x取什么值时y随x增大而减少?
如图, B 、 F 、 C 、 E 是直线 l 上的四点, AB / / DE , AB = DE , BF = CE .
(1)求证: ΔABC ≅ ΔDEF ;
(2)将 ΔABC 沿直线 l 翻折得到△ A ' BC .
①用直尺和圆规在图中作出△ A ' BC (保留作图痕迹,不要求写作法);
②连接 A ' D ,则直线 A ' D 与 l 的位置关系是 .
在3张相同的小纸条上,分别写上条件:①四边形 ABCD 是菱形;②四边形 ABCD 有一个内角是直角;③四边形 ABCD 的对角线相等.将这3张小纸条做成3支签,放在一个不透明的盒子中.
(1)搅匀后从中任意抽出1支签,抽到条件①的概率是 ;
(2)搅匀后先从中任意抽出1支签(不放回),再从余下的2支签中任意抽出1支签.四边形 ABCD 同时满足抽到的2张小纸条上的条件,求四边形 ABCD 一定是正方形的概率.
为降低处理成本,减少土地资源消耗,我国正在积极推进垃圾分类政策,引导居民根据"厨余垃圾"、"有害垃圾"、"可回收物"和"其他垃圾"这四类标准将垃圾分类处理.调查小组就某小区居民对垃圾分类知识的了解程度进行了抽样调查,并根据调查结果绘制成统计图.
(1)本次调查的样本容量是 ;
(2)补全条形统计图;
(3)已知该小区有居民2000人,请估计该小区对垃圾分类知识"完全了解"的居民人数.
计算: 4 - ( - 1 ) 2 - ( π - 1 ) 0 + 2 - 1 .
如图,在平面直角坐标系中,二次函数 y = x 2 + bx + c 的图象经过点 A ( 0 , - 7 4 ) ,点 B ( 1 , 1 4 ) .
(1)求此二次函数的解析式;
(2)当 - 2 ⩽ x ⩽ 2 时,求二次函数 y = x 2 + bx + c 的最大值和最小值;
(3)点 P 为此函数图象上任意一点,其横坐标为 m ,过点 P 作 PQ / / x 轴,点 Q 的横坐标为 - 2 m + 1 .已知点 P 与点 Q 不重合,且线段 PQ 的长度随 m 的增大而减小.
①求 m 的取值范围;
②当 PQ ⩽ 7 时,直接写出线段 PQ 与二次函数 y = x 2 + bx + c ( - 2 ⩽ x < 1 3 ) 的图象交点个数及对应的 m 的取值范围.