如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.
(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 如图,表示一段笔直的高架道路,线段表示高架道路旁的一排居民楼.已知点到的距离为米,的延长线与相交于点,且,假设汽车在高速道路上行驶时,周围米以内会受到噪音的影响. (1)过点作的垂线,垂足为点.如果汽车沿着从到的方向在上行驶,当汽车到达点处时,噪音开始影响这一排的居民楼,那么此时汽车与点的距离为多少米? (2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点时,它与这一排居民楼的距离为米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到米) (参考数据:)
(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 已知:如图,在平面直角坐标系中,正比例函数的图像经过点,点的纵坐标为,反比例函数的图像也经过点,第一象限内的点在这个反比例函数的图像上,过点作轴,交轴于点,且. 求:(1)这个反比例函数的解析式;(2)直线的表达式.
解不等式组:,并把解集在数轴上表示出来.
先化简,再求值:,其中.
(本小题满分13分)在平面直角坐标系中,O为原点,直线y =-2x-1与y轴交于点A,与直线y =-x交于点B,点B关于原点的对称点为点C. (1)求过A,B,C三点的抛物线的解析式; (2)P为抛物线上一点,它关于原点的对称点为Q. ①当四边形PBQC为菱形时,求点P的坐标; ②若点P的横坐标为t(-1<t<1),当t为何值时,四边形PBQC面积最大,并说明理由.