(本小题满分12分)定义在上的函数满足下面三个条件:①对任意正数,都有;②当时,;③.(1)求和的值;(2)试用单调性定义证明:函数在上是减函数;(3)求满足的的取值集合.
设命题p:关于x的不等式的解集是,命题q:函数的定义域为R. (1)如果“p且q”为真,求实数a的取值范围;(2)如果“p且q”为假,“p或q”为真,求实数a的取值范围.
(本小题14分)已知函数为常数.(1)求函数的定义域;(2)若时, 对于比较与的大小;(3)若对任意,不等式恒成立,求实数的值.
(本小题14分)已知直线经过椭圆的左顶点和上顶点,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点.(1)求椭圆的方程; (2)求证:直线与直线斜率的乘积为定值;(3)求线段的长度的最小值.
(本小题14分)如图所示,在四棱锥中,底面为矩形,侧棱底面,为的中点.(1)求直线与所成角的余弦值;(2)在侧面内找一点,使平面,并分别求出点到和的距离.
(本小题14分)已知函数,曲线在处的切线方程为,若时, 有极值.(1)求的值; (2)求在区间上的最大值和最小值.