(本小题14分)如图所示,在四棱锥中,底面为矩形,侧棱底面,为的中点.(1)求直线与所成角的余弦值;(2)在侧面内找一点,使平面,并分别求出点到和的距离.
(1)求函数(的最小值以及相应的的值;(2)用20cm长得一段铁丝折成一个面积最大的矩形,这个矩形的长、宽各为多少?并求出这个最大值.
已知,比较下列各题中两个代数式值的大小:(1)与;(2)与.
已知椭圆的方程为,点分别为其左、右顶点,点分别为其左、右焦点,以点为圆心,为半径作圆;以点为圆心,为半径作圆;若直线被圆和圆截得的弦长之比为;(1)求椭圆的离心率;(2)己知,问是否存在点,使得过点有无数条直线被圆和圆截得的弦长之比为;若存在,请求出所有的点坐标;若不存在,请说明理由.
已知椭圆的离心率为,过右顶点的直线与椭圆相交于、两点,且. (1)求椭圆和直线的方程;(2)记曲线在直线下方的部分与线段AB所围成的平面区域(含边界)为.若曲线与有公共点,试求实数的最小值.
已知舰在舰的正东,距离6公里,舰在舰的北偏西30°,距离4公里,它们准备围找海洋动物,某时刻舰发现动物信号,4秒后,舰,同时发现这种信号,于是发射麻醉炮弹,设舰与动物都是静止的,动物信号的传播速度为1公里/1秒,求舰炮击的方位角.