如图,在平面直角坐标系中,矩形OABC的四个顶点坐标分别为O(0,0),A(4,0),B(4,3),C(0,3),G是对角线AC的中点,动直线MN平行于AC且交矩形OABC的一组邻边于E、F,交y轴、x轴于M、N.设点M的坐标为(0,t),△EFG的面积为S.(1)求S与t的函数关系式;(2)当△EFG为直角三角形时,求t的值;(3)当点G关于直线EF的对称点G′ 恰好落在矩形OABC的一条边所在直线上时,直接写出t的值.
阅读课本材料,解答后面的问题.折纸与证明折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(图27-1),怎样证明∠C>∠B呢?把AC沿∠A的平分线AD翻折,因为AB>AC,所以,点C落在AB上的点C’处(图27-2).于是,由∠AC’D>∠B,可得∠C>∠B.在△ABC中,∠B=2∠C,点D为线段BC上一动点,当AD满足某种条件时,探讨在线段AB、BD、CD、AC四条线段中,某两条或某三条线段之间存在的数量关系.(1)如图3,当AD⊥BC时,求证:AB+BD=DC;(2)如图4,当AD是∠BAC的角平分线时,写出AB、BD、AC的数量关系,并证明.
如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F, DF=EF,BD=CE,过D作DG∥AC交BC于G.求证:(1)△GDF≌△CEF;(2)若AB=5,BC=6,求△ABC的面积.
如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)请你探究∠CEF与∠ADC的数量关系,并证明你的结论;(2)若EF∥CD,求∠BDC的度数.
如图,四边形ABCD的对角线AC与BD相交于点O,∠1=∠2,∠3=∠4. 求证:(1) BC=DC; (2) AC⊥BD.
如图,△ABC中,,,AB=AC.(1)求的度数;(2)求证:BC=BD=AD.