为了保证信息安全传输,设计一种密码系统,其加密、解密原理如下图:现在加密方式为:把发送的数字信息X,写为“a11a21a12a22”的形式,先左乘矩阵A=,再左乘矩阵B=,得到密文Y,现在已知接收方得到的密文4,12,36,72,试破解该密码.
A、B、C是我方三个炮兵阵地,A在B的正东方向,相距6 km,C在B的北偏西30°方向上,相距4 km,P为敌炮阵地.某时刻A发现敌炮阵地的某种信号,由于B、C两地比A距P地远,因此4 s后,B、C才同时发现这一信号(该信号的传播速度为1 km/s).A若炮击P地,求炮击的方位角.
已知双曲线-=1,P为双曲线上一点,F1、F2是双曲线的两个焦点,并且∠F1PF2=60°,求△F1PF2的面积.
已知曲线C:x2-y2=1及直线l:y=kx-1. (1)若l与C有两个不同的交点,求实数k的取值范围; (2)若l与C交于A、B两点,O是坐标原点,且△AOB的面积为2,求实数k的值.
设A、B是双曲线x2-=1的上两点,点N(1,2)是线段AB的中点.(1)求直线AB的方程;(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
过双曲线-=1的一个焦点作x轴的垂线,求垂线与双曲线的交点到两焦点的距离.