(本小题满分12分)已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围;(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.
已知函数, .(1)若, 函数 在其定义域是增函数,求的取值范围;(2)在(1)的结论下,设函数的最小值;(3)设函数的图象与函数的图象交于点,过线段的中点作轴的垂线分别交、于点、,问是否存在点,使在处的切线与在处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.
已知数列的前项和满足:(为常数,且). (1)求的通项公式;(2)设,若数列为等比数列,求的值;(3)在满足条件(2)的情形下,设,数列的前项和为 ,求证:.
在平面直角坐标系中,已知点,,为动点,且直线与直线的斜率之积为.(1)求动点的轨迹的方程;(2)设过点的直线与曲线相交于不同的两点,.若点在轴上,且,求点的纵坐标的取值范围.
如图,长方体中,,点是的中点.(1)求三棱锥的体积;(2)证明:;(3)求二面角的正切值.
某高校在2011年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试.① 已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率;② 学校决定在这6名学生中随机抽取2名学生接受考官的面试,设第4组中有X名学生被考官面试,求X的分布列和数学期望.