(本小题满分12分)已知函数f(x)=,x∈[1,+∞).(1)当a=时,判断证明f(x)的单调性并求f(x)的最小值;(2)(2)若对任意x∈[1,+∞),f(x)>1恒成立,试求实数a的取值范围.
(本小题满分12分)已知向量a=(cosx,2),b=(sinx,-3). (1)当a∥b时,求3cos2x-sin2x的值; (2)求函数f(x)=(a-b)·a在x∈[-,0]上的值域.
(文) (本小题满分12分) 已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2、a4的等差中项. (1)求数列{an}的通项公式; (2)若bn=log2an+1,Sn是数列{bn}的前n项和,求使Sn>42+4n成立的n的最小值.
(本小题满分12分) 已知数列{an}的前n项和Sn=12n-n2,求数列{|an|}的前n项和Tn. 剖析:由Sn=12n-n2知Sn是关于n的无常数项的二次函数(n∈N*),可知{an}为等差数列,求出an,然后再判断哪些项为正,哪些项为负,最后求出Tn.
(文) (本小题满分12分已知函数, (1)求函数的值域和最小正周期; (2)求函数的递减区间;
(本小题满分12分) 已知cosα=,cos(α-β)=,且0<β<α<. (1)求tan2α的值; (2)求β