某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在的地区附近有A,B,C三家社区医院,并且他们对社区医院的选择是相互独立的.(I)求甲、乙两人都选择A社区医院的概率;(II)求甲、乙两人不选择同一家社区医院的概率;(III)设4名参加保险人员中选择A社区医院的人数为ξ,求ξ的分布列和数学期望.
已知A、D分别为椭圆E: 的左顶点与上顶点,椭圆的离心率,F1、F2为椭圆的左、右焦点,点P是线段AD上的任一点,且的最大值为1 .(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OAOB(O为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由;(3)设直线l与圆相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
已知函数(1)若函数上的增函数,求k的取值范围;(2)若对任意的x>0都有求满足条件的最大整数k的值。(3)证明:。
)如图,在直三棱柱ABC—A1B1C1中,∠ACB=900,CB=1,CA=,AA1=,M为侧棱CC1上一点,AM⊥BA1。(1)求证:AM⊥平面A1BC;(2)求二面角B—AM—C的大小;(3)求点C到平面ABM的距离。
设A、B、C三个事件相互独立,事件A发生的概率是,A、B、C中只有一个发生的概率为,A、B、C中只有一个不发生的概率是。(1)求事件B发生的概率及事件C发生的概率;(2)试求A、B、C均不发生的概率。
已知数列。(1)求的值;(2)猜想的表达式并用数学归纳法证明。