某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在的地区附近有A,B,C三家社区医院,并且他们对社区医院的选择是相互独立的.(I)求甲、乙两人都选择A社区医院的概率;(II)求甲、乙两人不选择同一家社区医院的概率;(III)设4名参加保险人员中选择A社区医院的人数为ξ,求ξ的分布列和数学期望.
解关于的一元二次不等式.
设椭圆的方程为,斜率为1的直线不经过原点,而且与椭圆相交于两点,为线段的中点. (1)问:直线与能否垂直?若能,之间满足什么关系;若不能,说明理由; (2)已知为的中点,且点在椭圆上.若,求椭圆的离心率.
在正方体中,分别的中点. (1)求证:; (2)已知是靠近的的四等分点,求证:.
已知函数的定义域为.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N. (1)求证:是定值; (2)判断并说明有最大值还是最小值,并求出此最大值或最小值.
已知数列的前项和满足,又,. (1)求实数k的值; (2)问数列是等比数列吗?若是,给出证明;若不是,说明理由; (3)求出数列的前项和.