(本小题满分15分)已知函数.(1)当时,求函数的单调递增区间;(2)求所有的实数,使得对任意时,函数的图象恒在函数图象的下方;(3)若存在,使得关于的方程有三个不相等的实数根,求实数的取值范围.
已知数列中各项均为正数,是数列的前项和,且.(1)求数列的通项公式 (2)对,试比较与的大小.
设△ABC的三内角的对边长分别为a、b、c,已知a、b、c成等比数列,且(Ⅰ)求角的大小;(Ⅱ)若,求函数的值域.
已知函数的图象过点P(0,2),且在点M处的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.
已知为锐角,,,求和的值。
已知等比数列的前项和为,正数数列的首项为,且满足:.记数列前项和为.(Ⅰ)求的值; (Ⅱ)求数列的通项公式;(Ⅲ)是否存在正整数,且,使得成等比数列?若存在,求出的值,若不存在,说明理由.