(本小题满分12分)已知函数,的最大值是1,最小正周期是,其图像经过点.(1)求的解析式;(2)设、、为△ABC的三个内角,且,,求的值.
已知集合,集合,集合 (1)求从集合中任取一个元素是(3,5)的概率; (2)从集合中任取一个元素,求的概率; (3)设为随机变量,,写出的分布列,并求.
已知函数. (1)求的值; (2)设,若,求的值.
已知椭圆的左右焦点分别是,直线与椭圆交于两点,.当时,M恰为椭圆的上顶点,此时△的周长为6. (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆的左顶点为A,直线与直线分别相交于点,,问当 变化时,以线段为直径的圆被轴截得的弦长是否为定值?若是,求出这个定值, 若不是,说明理由.
已知函数在处取得极值. (I)求与满足的关系式; (II)若,求函数的单调区间; (III)若,函数,若存在,,使得 成立,求的取值范围.
等差数列的各项均为正数,,前n项和为,为等比数列,,且 (I)求与; (II)求