如图,实线部分的月牙形公园是由圆上的一段优弧和圆上的一段劣弧围成,圆和圆的半径都是,点在圆上,现要在公园内建一块顶点都在圆上的多边形活动场地.(Ⅰ)如图甲,要建的活动场地为△,求活动场地的最大面积;(Ⅱ)如图乙,要建的活动场地为等腰梯形,求活动场地的最大面积;
设 { a n } 是公比不为1的等比数列, a 1 为 a 2 , a 3 的等差中项.
(1)求 { a n } 的公比;
(2)若 a 1 = 1 ,求数列 { n a n } 的前 n 项和.
已知函数 f ( x ) = a e x - 1 - ln x + ln a .
(1)当 a = e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;
(2)若f(x)≥1,求a的取值范围.
已知椭圆C: x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 过点M(2,3),点A为其左顶点,且AM的斜率为 1 2 ,
(1)求C的方程;
(2)点N为椭圆上任意一点,求△AMN的面积的最大值.
如图,四棱锥 P- ABCD的底面为正方形, PD⊥底面 ABCD.设平面 PAD与平面 PBC的交线为 l.
(1)证明: l⊥平面 PDC;
(2)已知 PD= AD=1, Q为 l上的点,求 PB与平面 QCD所成角的正弦值的最大值.
为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了 100 天空气中的 PM 2 . 5 和 S O 2 浓度(单位: μ g/ m 3 ),得下表:
S O 2
PM 2 . 5
[ 0 , 50 ]
( 50 , 150 ]
( 150 , 475 ]
[ 0 , 35 ]
32
18
4
( 35 , 75 ]
6
8
12
( 75 , 115 ]
3
7
10
(1)估计事件"该市一天空气中 PM 2 . 5 浓度不超过 75 ,且 S O 2 浓度不超过 150 "的概率;
(2)根据所给数据,完成下面的 2 × 2 列联表:
[ 0 , 150 ]
[ 0 , 75 ]
(3)根据(2)中的列联表,判断是否有 99 % 的把握认为该市一天空气中 PM 2 . 5 浓度与 S O 2 浓度有关?
附: K 2 = n ( ad - bc ) 2 ( a + b ) ( c + d ) ( a + c ) ( b + d ) ,
P ( K 2 ≥ k )
0.050
0.010
0.001
k
3.841
6.635
10.828