(本小题满分15分)数列是首项为23,公差为整数的等差数列,且,.求:(1)数列的公差;(2)前项和的最大值;(3)当时,求的最大值.
已知函数. (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.
如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连结AE,BE.证明: (1)∠FEB=∠CEB; (2)EF2=AD·BC.
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D. (1)证明:DB=DC; (2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.
已知函数. (1)讨论f(x)在区间(0,1)上的单调性; (2)当a∈[3,+∞)时,曲线上总存在相异的两点,使得曲线在点P,Q处的切线互相平行,求证:.
已知函数. (1)若直线与的反函数的图象相切,求实数k的值; (2)设,讨论曲线与曲线公共点的个数; (3)设,比较与的大小,并说明理由.