(本小题满分14分)(1)已知正数x、y满足2x+y=1,求的最小值及对应的x、y值.(2)已知x>-2,求函数的最小值;
在如图所示的几何体中,四边形ACC1A1是矩形,FC1∥BC,EF∥A1C1,∠BCC1=90°,点A,B,E,A1在一个平面内,AB=BC=CC1=2,AC=2.证明:(1)A1E∥AB.(2)平面CC1FB⊥平面AA1EB.
如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,点M在AD1上移动,点N在BD上移动,D1M=DN=a(0<a<),连接MN.(1)证明对任意a∈(0,),总有MN∥平面DCC1D1.(2)当a为何值时,MN的长最小?
如图所示,四边形EFGH所在平面为三棱锥A-BCD的一个截面,四边形EFGH为平行四边形.(1)求证:AB∥平面EFGH,CD∥平面EFGH.(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.
在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若M是线段AD的中点,求证:GM∥平面ABFE.
如图,在正方体ABCD-A1B1C1D1中,E,F,G,M,N分别是B1C1,A1D1,A1B1,BD,B1C的中点,求证:(1)MN∥平面CDD1C1.(2)平面EBD∥平面FGA.