(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分)已知向量,且.(Ⅰ)若,求的值;(Ⅱ)设的内角的对边分别为,,且,求函数的值域.
(本小题满分10分)已知函数的图象过原点,且在,处取得极值. (Ⅰ)求函数的单调区间及极值; (Ⅱ)若函数与的图象有且仅有一个公共点,求实数的取值范围.
(本小题满分12分)已知直线过定点,且与抛物线交于、两点,抛物线在、两点处的切线的相交于点. (I)求点的轨迹方程; (II)求三角形面积的最小值.
(本小题满分12分)已知函数. (I)若函数在上是减函数,求实数的取值范围; (II)令,是否存在实数,使得当时,函数的最小值是,若存在,求出实数的值,若不存在,说明理由? (III)当时,证明:.
(本小题满分12分)已知函数,,点是函数图象上任意一点,直线为函数的图象在处的切线. (I)求直线的方程; (II)若直线与的图象相切,求和的取值范围.
(本小题满分12分)已知椭圆的方程是,椭圆的左顶点为,离心率,倾斜角为的直线与椭圆交于、两点. (Ⅰ)求椭圆的方程; (Ⅱ)设向量(),若点在椭圆上,求的取值范围.