如图,有一边长为5的正方形ABCD和等腰△PQR,PQ=PR=5cm,QR=8cm,点B,C,Q,R在同一条直线m上,当C,Q两点重合时,等腰△PQR以每秒1cm的速度沿直线m按箭头所示的方向开始匀速运动,t秒后正方形ABCD和等腰△PQR重合部分的面积为Scm2(1) 当t =3秒时,设PQ与CD相交于点F,点E为QR的中点,连结PE求证:ΔQCF∽ΔQEP(2)当t =6秒时,求S的值(3)当8≤t≤13,求S关于t的函数解析式
观察下列等式:①;②;③;…… 回答下列问题:(1)仿照上列等式,写出第n个等式: ; (2)利用你观察到的规律,化简:;(3)计算:
学校准备添置一批计算机.方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装工工资等其它费用合计3000元.设学校需要计算机x台,方案1与方案2的费用分别为y1、y2元.(1)分别写出y1、y2的函数解析式;(2)当学校添置多少台计算机时,两种方案的费用相同?(3)若学校需要添置计算机50台,那么采用哪一种方案较省钱?说说你的理由
如图:①写出A、B、C三点的坐标.A ( ) B( ) C( )②若△ABC各顶点的横坐标不变,纵坐标都乘以-1,请你在同一坐标系中描出对应的点 A′、B′、C′,并依次连接这三个点,所得的△A′B′C′与原△ABC有怎样的位置关系?③在②的基础上,纵坐标都不变,横坐标都乘以-1在同一坐标系中描出对应的点A″、B″、C″,并依次连接这三个点,所得的△A″B″C″与原△ABC有怎样的位置关系?
已知一次函数的图象如图所示.(1)求该一次函数的解析式;(2)直接写出:当时,的取值范围
如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,DC=12,AD=13,求四边形ABCD的面积.