如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D. (1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法); (2)求证:BC是过A,D,C三点的圆的切线; (3)若过A,D,C三点的圆的半径为3,则线段BC上是否存在一点P,使得以P,D, B为顶点的三角形与△BCO相似?若存在,求出DP的长;若不存在,请说明理由.
已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.(1)求这条抛物线的解析式;(2)如图,点P是第一象限内抛物线上的一个动点,若点P使四边形ABPC的面积最大,求点P的坐标.
如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,且与x轴交于A(﹣2,0).(1)求此二次函数解析式及顶点B的坐标;(2)在抛物线上有一点P,满足S△AOP=3,直接写出点P的坐标.
如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)
如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,.
如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求直线AB和反比例函数的解析式;(2)求△OCD的面积.