(本小题满分12分)如图,等腰梯形ABCD的底边AB和CD长分别为6和,高为3.(1)求这个等腰梯形的外接圆E的方程;(2)若线段MN的端点N的坐标为(5,2),端点M在圆E上运动,求线段MN的中点P的轨迹方程.
集合,,求,
已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。(Ⅰ)求数列的通项公式;(Ⅱ)设,是数列的前n项和,求使得对所有都成立的最小正整数m.
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,. (1)证明:; (2)设PD=AD=1,求点D到平面PBC的距离.
设数列的前n项和为,为等比数列,且 (1)求数列和的通项公式; (2)设,求数列的前n项和Tn
已知定义在区间(-1,1)上的函数为奇函数。且 (1)求实数的值。 (2)求证:函数(-1,1)上是增函数。 (3)解关于.