已知,.(1)求和;(2)定义且,求和.
已知,求的值.
设,椭圆方程为,抛物线方程为.如图所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点. (1)求满足条件的椭圆方程和抛物线方程; (2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
正四棱锥中,, 点M,N分别在PA,BD上,且. (Ⅰ)求异面直线MN与AD所成角; (Ⅱ)求证:∥平面PBC; (Ⅲ)求MN与平面PAB所成角的正弦值.
将一枚骰子(形状为正方体,六个面上分别标有数字1,2,3,4,5,6的玩具)先后抛掷两次,骰子向上的点数依次为. (1)求的概率; (2)求的概率P; (3)试将右侧求⑵中概率P的伪代码补充完整
已知抛物线的顶点在坐标原点,它的准线经过双曲线:的一个焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是. (1)求抛物线的方程及其焦点的坐标; (2)求双曲线的方程及其离心率.