(本小题满分12分)如图,已知点是离心率为的椭圆C:()上的一点,斜率为的直线BD交椭圆C于B,D两点,且A,B,D三点互不重合.(1)求椭圆C的方程;(2)求证:直线AB,AD的斜率之和为定值.
自圆O外一点P引切线与圆切于点A,M为PA的中点,过M引割线交圆于B,C两点.求证:∠MCP=∠MPB.
如图所示,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2,AB=BC=3.求BD以及AC的长.
如图所示,在△ABC中,AD为BC边上的中线,F为AB 上任意一点,CF交AD于点E.求证:AE·BF=2DE·AF.
如图A.B是单位圆O上的点,且点在第二象限. C是圆O与轴正半轴的交点,A点的坐标为,△为直角三角形. (1)求; (2)求的长度
如图,已知空间四边形中,,是的中点. 求证:(1)平面CDE; (2)平面平面. (3)若G为的重心,试在线段AE上确定一点F,使得GF//平面CDE.