(本小题满分12分)如图,已知点是离心率为的椭圆C:()上的一点,斜率为的直线BD交椭圆C于B,D两点,且A,B,D三点互不重合.(1)求椭圆C的方程;(2)求证:直线AB,AD的斜率之和为定值.
已知正三棱柱ABC –A1B1C1中,AB = 2,AA1 =.点F,E分别是边A1C1和侧棱BB1的中点.(Ⅰ)证明:AC⊥平面BEF;(Ⅱ)三棱锥F-AEC的体积.
已知等比数列{an}的前n项和为Sn,A1="3," 且3S1 , 2S2 , S3成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log3an,求Tn=b1b2 - b2b3 + b3b4 - b4b5 + … + b2n-1b2n - b2nb2n+1
已知a , b , c∈R+,证明:(Ⅰ)(A + b + c )(A2 + b2 + c2 ) ≤ 3(A3 + b3 +c3 );(Ⅱ).
已知曲线C的参数方程是 ( θ为参数 ),以直角坐标系xoy的原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ+ sinθ) = 4(Ⅰ)试求曲线C上任意点M到直线l的距离的最大值;(Ⅱ)设P是l上的一点,射线OP交曲线C于R点,又点Q在射线OP上,且满足|OP|·|OQ|=|OR|2,当点P在直线l上移动时,试求动点Q的轨迹.
如图,点A为圆外一点,过点A作圆的两条切线,切点分别为B,C,ADE是圆的一条割线,连接CD, BD, BE, CE。(Ⅰ)求证:BE·CD = BD·CE(Ⅱ)延长CD,交AB于F,若CE∥AB,证明:F为线段AB的中点