在△ABC中,角A,B,C的对边分别为,且A,B,C成等差数列。(1)若,,求△ABC的面积;(2)若成等比数列,试判断△ABC的形状。
已知复数,, (Ⅰ)求; (Ⅱ)若复数满足,求.
已知函数 (Ⅰ)求的单调区间; (Ⅱ)求上的最值.
设曲线在点A(x,)处的切线斜率为k(x),且k (-1)=0.对一切实数x,不等式xk (x)恒成立(≠0). (1) 求(1)的值; (2) 求函数k(x)的表达式; (3) 求证:>
已知是函数的一个极值点。 (1)求的值; (2)求函数的单调区间; (3)若直线与函数的图象有3个交点,求的取值范围。
现有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,将这五个球放入5个盒子内. (1)若只有一个盒子空着,共有多少种投放方法? (2)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法? (3)若每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?