(本题18分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
已知的展开式中偶数项二项式系数和比展开式中奇数项二项式系数和小,求: (I)展开式中二项式系数最大的项; (II)设展开式中的常数项为p,展开式中所有项系数的和为q,求p+q.
已知关于x的一元二次方程x2-2(a-2)x-b2+16=0. (1)若a,b是一枚骰子掷两次所得到的点数,求方程有两正根的概率; (2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.
用0,1,2,3,4,5这六个数字(允许重复),组成四位数. ( I)可以组成多少个四位数? ( II)可组成多少个恰有两个相同数字的四位数?
设函数 (Ⅰ)当时,求函数的极值; (Ⅱ)当时,讨论函数的单调性. (Ⅲ)若对任意及任意,恒有成立,求实数的取值范围.
已知椭圆的左顶点,过右焦点且垂直于长轴的弦长为. (Ⅰ)求椭圆的方程; (Ⅱ)若过点的直线与椭圆交于点,与轴交于点,过原点与平行的直线与椭圆交于点,求证:为定值.